Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Sports Med Open ; 9(1): 108, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37979071

ABSTRACT

BACKGROUND: Immersion Pulmonary Edema (IPE) is a common and potentially serious diving accident that can have significant respiratory and cardiac consequences and, in some cases, be fatal. Our objective was to characterize cases of IPE among military trainees and recreational divers and to associate their occurrence with exposure and individual background factors such as age and comorbidity. We conducted a retrospective analysis on the medical records and diving parameters of all patients who were treated for IPE at the Hyperbaric Medicine Department of Sainte-Anne Military Hospital in Toulon, France, between January 2017 and August 2019. In total, 57 subjects were included in this study, with ages ranging from 20 to 62 years. These subjects were divided into two distinct groups based on exposure categories: (1) underwater/surface military training and (2) recreational scuba diving. The first group consisted of 14 individuals (25%) with a mean age of 26.5 ± 2.6 years; while, the second group comprised 43 individuals (75%) with a mean age of 51.2 ± 7.5 years. All divers under the age of 40 were military divers. RESULTS: In 40% of cases, IPE occurred following intense physical exercise. However, this association was observed in only 26% of recreational divers, compared to 86% of military divers. Among civilian recreational divers, no cases of IPE were observed in subjects under the age of 40. The intensity of symptoms was similar between the two groups, but the duration of hospitalization was significantly longer for the recreational subjects. CONCLUSION: It seems that the occurrence of IPE in young and healthy individuals requires their engagement in vigorous physical activity. Additionally, exposure to significant ventilatory constraints is a contributing factor, with the intensity of these conditions seemingly exclusive to military diving environments. In contrast, among civilian recreational divers, IPE tends to occur in subjects with an average age twice that of military divers. Moreover, these individuals exhibit more prominent comorbidity factors, and the average level of environmental stressors is comparatively lower.

2.
Front Med (Lausanne) ; 10: 1172646, 2023.
Article in English | MEDLINE | ID: mdl-37746073

ABSTRACT

Introduction: Spinal cord decompression sickness (scDCS) unfortunately has a high rate of long-term sequelae. The purpose of this study was to determine the best therapeutic management in a hyperbaric center and, in particular, the influence of hyperbaric treatment performed according to tables at 4 atm (Comex 30) or 2.8 atm abs (USNT5 or T6 equivalent). Methods: This was a retrospective study that included scDCS with objective sensory or motor deficit affecting the limbs and/or sphincter impairment seen at a single hyperbaric center from 2010 to 2020. Information on dive, time to recompression, and in-hospital management (hyperbaric and medical treatments such as lidocaine) were analyzed as predictor variables, as well as initial clinical severity and clinical deterioration in the first 24 h after initial recompression. The primary endpoint was the presence or absence of sequelae at discharge as assessed by the modified Japanese Orthopaedic Association score. Results: 102 divers (52 ± 16 years, 20 female) were included. In multivariate analysis, high initial clinical severity, deterioration in the first 24 h, and recompression tables at 4 atm versus 2.8 atm abs for both initial and additional recompression were associated with incomplete neurological recovery. Analysis of covariance comparing the effect of initial tables at 2.8 versus 4 atm abs as a function of initial clinical severity showed a significantly lower level of sequelae with tables at 2.8 atm. In studying correlations between exposure times to maximum or cumulative O2 dose and the degree of sequelae, the optimal initial treatment appears to be a balance between administration of a high partial pressure of O2 (2.8 atm) and a limited exposure duration that does not result in pulmonary oxygen toxicity. Further analysis suggests that additional tables in the first 24-48 h at 2.8 atm abs with a Heliox mixture may be beneficial, while the use of lidocaine does not appear to be relevant. Conclusion: Our study shows that the risk of sequelae is related not only to initial severity but also to clinical deterioration in the first 24 h, suggesting the activation of biological cascades that can be mitigated by well-adapted initial and complementary hyperbaric treatment.

3.
Front Physiol ; 14: 1145204, 2023.
Article in English | MEDLINE | ID: mdl-36950295

ABSTRACT

Introduction: During military fin swimming, we suspected that oxygen uptake ( V ˙ O2) and pulmonary ventilation ( V ˙ E) might be much higher than expected. In this framework, we compared these variables in the responses of trained military divers during land cycling and snorkeling exercises. Methods: Eighteen male military divers (32.3 ± 4.2 years; 178.0 ± 5.0 cm; 76.4 ± 3.4 kg; 24.1 ± 2.1 kg m-2) participated in this study. They performed two test exercises on two separate days: a maximal incremental cycle test (land condition), and an incremental fin swimming (fin condition) in a motorized swimming flume. Results: The respective fin and land V ˙ O2max were 3,701 ± 39 mL min-1 and 4,029 ± 63 mL min-1 (p = 0.07), these values were strongly correlated (r 2 = 0.78 p < 0.01). Differences in V ˙ O2max between conditions increased relative to l; V ˙ O2max (r 2 = 0.4 p = 0.01). Fin V ˙ E max values were significantly lower than land V ˙ E max values (p = 0.01). This result was related to both the significantly lower fin Vt and f (p < 0.01 and <0.04, respectively). Consequently, the fin V ˙ E max / V ˙ O2max ratios were significantly lower than the corresponding ratios for land values (p < 0.01), and the fin and land V ˙ E max were not correlated. Other parameters measured at exhaustion-PaO2, PaCO2, and SO2 - were similar in fin and land conditions. Furthermore, no significant differences between land and fin conditions were observed for peak values for heart rate, blood lactate concentration, and respiratory exchange ratio R. Conclusion: Surface immersion did not significantly reduce the V ˙ O2max in trained divers relative to land conditions. As long as V ˙ O2 remained below V ˙ O2max , the V ˙ E values were identical in the two conditions. Only at V ˙ O2max was V ˙ E higher on land. Although reduced by immersion, V ˙ E max provided adequate pulmonary gas exchange during maximal fin swimming.

4.
Int Marit Health ; 74(1): 36-44, 2023.
Article in English | MEDLINE | ID: mdl-36974491

ABSTRACT

BACKGROUND: Scientific underwater exploration could benefit from professional diving facilities. This could allow marine research for durations far exceeding anything currently possible. The closed-circuit rebreather expansion provides new perspectives by unleashing divers and their diving bell. "Under the Pole Expeditions" developed an innovative compact underwater habitat for this purpose. MATERIALS AND METHODS: The habitat's depth was fixed at 20 m. Saturation lasted 3 days and was followed by a 245 min long decompression procedure with mandatory in-water phase. Isolation and environmental constraints will require specific medical and safety procedures. "In situ" medical concerns were considered, and a specific evacuation plan was established. This report describes the medical management of this atypical project and the systematic clinical follow-up mostly targeted on the cardiovascular system, fatigue and psychological tolerance. RESULTS: Seventeen individual saturation exposures were performed. All selected divers were professional. Neither severe illness nor decompression sickness was observed. These short-term saturation exposures appeared to be well tolerated. There was a relatively low bubble grade after decompression. Psychological tolerance appeared good. However, a transient moderate orthostatic hypotension suggested cardiovascular deconditioning after dive. CONCLUSIONS: This first experiment demonstrates the interest and feasibility of a shallow revisited saturation dive with rebreather use. This isolation requires medical accompaniment and rigorous preparation. Medical and physiological risks assessment is essential in this context and must be consolidated by new experiences.


Subject(s)
Decompression Sickness , Diving , Expeditions , Humans , Diving/adverse effects , Diving/physiology , Decompression Sickness/therapy , Decompression/methods , Ecosystem
5.
Front Physiol ; 13: 1022370, 2022.
Article in English | MEDLINE | ID: mdl-36439242

ABSTRACT

Introduction: In order to allow the resumption of diving activities after a COVID-19 infection, French military divers are required to undergo a medical fitness to dive (FTD) assessment. We present here the results of this medical evaluation performed 1 month after the infection. Methods: We retrospectively analyzed between April 2020 and February 2021 200 records of divers suspected of COVID-19 contamination. Data collected included physical examination, ECG, blood biochemistry, chest CT scan and spirometry. Results: 145 PCR-positive subjects were included, representing 8.5% of the total population of French military divers. Two divers were hospitalized, one for pericarditis and the other for non-hypoxemic pneumonia. For the other 143 divers, physical examination, electrocardiogram and blood biology showed no abnormalities. However 5 divers (3.4%) had persistent subjective symptoms including fatigability, exertional dyspnea, dysesthesias and anosmia. 41 subjects (29%) had significant decreases in forced expiratory flows at 25-75% and 50% on spirometry (n = 20) or bilateral ground-glass opacities on chest CT scan (n = 24). Only 3 subjects were affected on both spirometry and chest CT. 45% of these abnormalities were found in subjects who were initially asymptomatic or had non-respiratory symptoms. In case of abnormalities, normalization was obtained within 3 months. The median time to return to diving was 45 days (IQR 30, 64). Conclusion: Our study confirms the need for standardized follow-up in all divers after COVID-19 infection and for maintaining a rest period before resuming diving activities.

6.
Front Physiol ; 13: 1005698, 2022.
Article in English | MEDLINE | ID: mdl-36277200

ABSTRACT

Introduction: The presence of intra-pulmonary air lesions such as cysts, blebs and emphysema bullae, predisposes to pulmonary barotrauma during pressure variations, especially during underwater diving activities. These rare accidents can have dramatic consequences. Chest radiography has long been the baseline examination for the detection of respiratory pathologies in occupational medicine. It has been replaced since 2018 by the thoracic CT scan for military diving fitness in France. The objective of this work was to evaluate the prevalence of the pulmonary abnormalities of the thoracic CT scan, and to relate them to the characteristics of this population and the results of the spirometry. Methods: 330 records of military diving candidates who underwent an initial assessment between October 2018 and March 2021 were analyzed, in a single-center retrospective analysis. The following data were collected: sex, age, BMI, history of respiratory pathologies and smoking, treatments, allergies, diving practice, results of spirometry, reports of thoracic CT scans, as well as fitness decision. Results: The study included 307 candidates, mostly male, with a median age of 25 years. 19% of the subjects had abnormal spirometry. We identified 25% of divers with CT scan abnormalities. 76% of the abnormal scans were benign nodules, 26% of which measured 6 mm or more. Abnormalities with an aerial component accounted for 13% of the abnormal scans with six emphysema bullae, three bronchial dilatations and one cystic lesion. No association was found between the presence of nodules and the general characteristics of the population, whereas in six subjects emphysema bullae were found statistically associated with active smoking or abnormal spirometry results. Conclusion: The systematic performance of thoracic CT scan in a young population free of pulmonary pathology revealed a majority of benign nodules. Abnormalities with an aerial component are much less frequent, but their presence generally leads to a decision of unfitness. These results argue in favor of a systematic screening of aeric pleuro-pulmonary lesions during the initial assessment for professional divers.

7.
Front Physiol ; 13: 882944, 2022.
Article in English | MEDLINE | ID: mdl-35655958

ABSTRACT

On one side, decompression sickness (DCS) with neurological disorders lead to a reshuffle of the cecal metabolome of rats. On the other side, there is also a specific and different metabolomic signature in the cecum of a strain of DCS-resistant rats, that are not exposed to hyperbaric protocol. We decide to study a conventional strain of rats that resist to an accident-provoking hyperbaric exposure, and we hypothesize that the metabolomic signature put forward may correspond to a physiological response adapted to the stress induced by diving. The aim is to verify and characterize whether the cecal compounds of rats resistant to the provocative dive have a cecal metabolomic signature different from those who do not dive. 35 asymptomatic diver rats are selected to be compared to 21 rats non-exposed to the hyperbaric protocol. Because our aim is essentially to study the differences in the cecal metabolome associated with the hyperbaric exposure, about half of the rats are fed soy and the other half of maize in order to better rule out the effect of the diet itself. Lower levels of IL-1ß and glutathione peroxidase (GPX) activity are registered in blood of diving rats. No blood cell mobilization is noted. Conventional and ChemRICH approaches help the metabolomic interpretation of the 185 chemical compounds analyzed in the cecal content. Statistical analysis show a panel of 102 compounds diet related. 19 are in common with the hyperbaric protocol effect. Expression of 25 compounds has changed in the cecal metabolome of rats resistant to the provocative dive suggesting an alteration of biliary acids metabolism, most likely through actions on gut microbiota. There seem to be also weak changes in allocations dedicated to various energy pathways, including hormonal reshuffle. Some of the metabolites may also have a role in regulating inflammation, while some may be consumed for the benefit of oxidative stress management.

8.
Emerg Med J ; 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35135892

ABSTRACT

BACKGROUND: Decompression sickness (DCS) with spinal cord involvement has an unfortunately high rate of long-term sequelae. The objective of this study was to determine the association of prehospital variables on the outcome of spinal cord DCS, especially the influence of the initial clinical presentation and the time to recompression. METHODS: This was a retrospective study using prospectively collected data which included divers with spinal cord DCS seen at a single hyperbaric centre study from 2010 to 2018. Information regarding dive, latency of onset of symptoms, time to recompression and prehospital management, that is, use of oxygen, treatment and means of evacuation, were analysed as predictor variables. The initial clinical severity was estimated by the score of the French society of diving and hyperbaric medicine (MEDSUBHYP). The primary end point was the presence or absence of sequelae at discharge assessed by the modified score of the Japanese Orthopedic Association. RESULTS: 195 divers (48±12 years, 42 women) were included. 34% had neurological sequelae at discharge. In multivariate analysis, a MEDSUBHYP score ≥6 and a time to recompression >194 min were significantly associated with incomplete neurological recovery (OR 9.5 (95% CI 4.6 to 19.8), p<0.0001 and OR 2.1 (95% CI 1.03 to 4.5), p=0.04, respectively). Time to recompression only appeared to be significant for patients with high initial clinical severity. As time to recompression increased, the level of sequelae also increased (p=0.014). CONCLUSION: Determining the initial clinical severity is critical in identifying patients who need to be evacuated for recompression as quickly as possible.

9.
Travel Med Infect Dis ; 39: 101951, 2021.
Article in English | MEDLINE | ID: mdl-33333213

ABSTRACT

BACKGROUND: The French military personnel may be exposed to leptospirosis during their training or on duty on the field in continental France, and most of all, in intertropical areas in the French departments and in Africa. The aim of this study was to assess the incidence of leptospirosis from epidemiological surveillance and cases data from 2004 to 2018, and to propose tools to assess leptospirosis risk prior to any mission or leisure activity. METHOD: A retrospective epidemiological study on leptospirosis cases among French Armed Forces was conducted. More data were collected for 2 clusters in Martinique, as most of leptospirosis cases among French military personnel were identified in Martinique. RESULTS: Eighty-eight cases of leptospirosis were reported, 15 cases in continental France and 73 cases in overseas (including 42 cases in the French West Indies). The global leptospirosis incidence rate in continental France was 0.3/100,000 person-years and in overseas 24/100,000 person-years with the higher incidence rate in Martinique (99/100,000 person-years) and in Mayotte (36.9/100,000 person-years). For the clusters in Martinique, between January and June 2009, 7 cases were declared; between 2016 and 2018, 16 cases were reported, high proportions of severe cardiac, renal and neurological forms (6/16) and hospitalizations (9/16). CONCLUSION: The occupational risk is real in French Armed Forces, particularly in malaria-free intertropical areas where chemoprophylaxis by doxycycline is not applied. Prevention can be optimized by the use of practical tools such as tables and cartographies, leading to a better leptospirosis risk assessment and application of preventive recommendations.


Subject(s)
Leptospirosis , Malaria , Military Personnel , Humans , Incidence , Leptospirosis/epidemiology , Retrospective Studies
10.
Sci Rep ; 10(1): 15996, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32994526

ABSTRACT

Massive bubble formation after diving can lead to decompression sickness (DCS), which can result in neurological disorders. We demonstrated that hydrogen production from intestinal fermentation could exacerbate DCS in rats fed with a standard diet. The aim of this study is to identify a fecal metabolomic signature that may result from the effects of a provocative hyperbaric exposure. The fecal metabolome was studied in two groups of rats previously fed with maize or soy in order to account for diet effects. 64 animals, weighing 379.0_20.2 g on the day of the dive, were exposed to the hyperbaric protocol. The rats were separated into two groups: 32 fed with maize (Div MAIZE) and 32 fed with soy (Div SOY). Gut fermentation before the dive was estimated by measuring exhaled hydrogen. Following hyperbaric exposure, we assessed for signs of DCS. Blood was analyzed to assay inflammatory cytokines. Conventional and ChemRICH approaches helped the metabolomic interpretation of the cecal content. The effect of the diet is very marked at the metabolomic level, a little less in the blood tests, without this appearing strictly in the clinic status. Nevertheless, 37 of the 184 metabolites analyzed are linked to clinical status. 35 over-expressed compounds let suggest less intestinal absorption, possibly accompanied by an alteration of the gut microbial community, in DCS. The decrease in another metabolite suggests hepatic impairment. This spectral difference of the ceca metabolomes deserves to be studied in order to check if it corresponds to functional microbial particularities.


Subject(s)
Cecum/metabolism , Decompression Sickness/metabolism , Metabolomics/methods , Nervous System Diseases/metabolism , Animal Feed , Animals , Chromatography, Liquid , Cytokines/blood , Decompression Sickness/complications , Disease Models, Animal , Gastrointestinal Microbiome , Male , Mass Spectrometry , Nervous System Diseases/etiology , Rats
11.
Diving Hyperb Med ; 50(2): 181-184, 2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32557423

ABSTRACT

INTRODUCTION: We report a case of a diving accident associating both cerebral symptoms and signs of respiratory impairment after two dives. The objective is to describe the process for obtaining the diagnosis. CASE REPORT: A 52-year-old man experienced mental confusion associated with hypoxaemia after surfacing. All decompression procedures were fully respected. The diver had a spatio-temporal disorientation accompanied by a marked tendency to fall asleep spontaneously. He had no dyspnoea and no cough, but crepitations at both lung bases were found with oxygen saturation at 80%. CONCLUSIONS: In this clinical case, cerebral magnetic resonance imaging and chest computed tomography scan helped to exclude other pathology that would have necessitated urgent transfer rather than urgent hyperbaric treatment. The imaging is particularly useful in case of cerebral and respiratory symptoms following scuba diving.


Subject(s)
Confusion , Decompression Sickness , Diving , Confusion/etiology , Diving/adverse effects , Humans , Hypoxia/etiology , Male , Middle Aged
12.
Diving Hyperb Med ; 50(1): 9-16, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32187612

ABSTRACT

INTRODUCTION: Numerous studies have been conducted to identify the factors influencing the short-term prognosis for neurological decompression sickness (DCS). However, the long-term sequelae are rarely assessed. The purpose of this study to investigate the factors likely to influence the long-term prognosis. METHODS: Twenty-seven Vietnamese fishermen-divers who on average 9 (SD 6) years beforehand had presented with neurological DCS and ongoing sequelae, were questioned and examined. The severity of the initial clinical profile was quantified using a severity score. The long-term sequelae were clinically evaluated by looking for a motor or sensory deficit or muscular spasticity, and by applying a severity score for the sequelae which focussed on gait and sphincter disorders. RESULTS: An initial severity score of ≥ 15 is significantly associated with a risk of serious long-term sequelae [OR = 13.7 (95% CI 2.4 to 79.5)]. Furthermore, certain treatment practices such as in-water recompression to depths > 17 metres' seawater breathing air are significantly associated with more serious sequelae. The practice of intensive non-standardised hyperbaric oxygen sessions over prolonged durations (median 30 days [IQR 19.5]) delayed after the initial accident (median 4 days [IQR 6]) also seems unfavourable. CONCLUSION: This study establishes a link between the initial DCS severity and the long-term sequelae causing severe gait disorders and sphincter incontinence. Furthermore, this work suggests that certain detrimental treatment practices should be modified. During this field study, we also found that it was possible to reduce sequelae of these divers by offering them an individual programme of self-rehabilitation.


Subject(s)
Decompression Sickness , Diving , Hyperbaric Oxygenation , Adult , Decompression , Humans , Middle Aged , Oxygen
13.
Eur J Appl Physiol ; 119(11-12): 2723-2731, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31676994

ABSTRACT

PURPOSE: Prolonged exposure to a high partial pressure of oxygen leads to inflammation of pulmonary tissue [pulmonary oxygen toxicity (POT)], which is associated with tracheobronchial irritation, retrosternal pain and coughing, and decreases in vital capacity (VC). The nitric oxide (NO) concentration in exhaled gas (FeNO) has been used as an indicator of POT, but the effect of SCUBA diving on FeNO has rarely been studied. The study presented here aimed to assess alterations to pulmonary function and FeNO following a 12-h dive using breathing apparatus with a relatively high partial pressure of oxygen. METHODS: Six healthy, male, non-smoking military SCUBA divers were recruited (age 31.8 ± 2.7 years, height 179 ± 0.09 cm, and body weight 84.6 ± 14 kg). Each diver completed a 12-h dive using a demand-controlled semi-closed-circuit rebreather. During the 12 h of immersion, divers were subjected to 672 oxygen toxicity units (OTU). A complete pulmonary function test (PFT) was completed the day before and immediately after immersion. FeNO was measured using a Nobreath™ Quark (COSMED™, Rome, Italy), three times for each diver. The first datapoint was collected before the dive to establish the "basal state", a second was collected immediately after divers emerged from the water, and the final measurement was taken 24 h after the dive. RESULT: Despite prolonged inhalation of a hyperoxic hyperbaric gas mixture, no clinical pulmonary symptoms were observed, and no major changes in pulmonary function were detected. However, a major decrease in FeNO values was observed immediately after emersion [0-12 ppb (median, 3.8 ppb)], with a return to baseline [2-60 ppb (median, 26 ppb) 24 h later (3-73 ppb (median, 24.7 ppb)]. CONCLUSION: These results suggest that if the OTU remain below the recommended limit values, but does alter FeNO, this type of dive does not persistently impair lung function.


Subject(s)
Diving/adverse effects , Lung/drug effects , Nitrogen/adverse effects , Oxygen/adverse effects , Administration, Inhalation , Adult , Exhalation/drug effects , Humans , Hyperoxia/metabolism , Male , Nitric Oxide/metabolism , Oxygen/metabolism , Partial Pressure , Respiratory Function Tests/methods , Vital Capacity/drug effects
14.
Front Physiol ; 10: 933, 2019.
Article in English | MEDLINE | ID: mdl-31396102

ABSTRACT

The prevention, prognosis and resolution of decompression sickness (DCS) are not satisfactory. The etiology of DCS has highlighted thrombotic and inflammatory phenomena that could cause severe neurological disorders or even death. Given the immunomodulatory effects described for minocycline, an antibiotic in widespread use, we have decided to explore its effects in an experimental model for decompression sickness. 40 control mice (Ctrl) and 40 mice treated orally with 90 mg/kg of minocycline (MINO) were subjected to a protocol in a hyperbaric chamber, compressed with air. The purpose was to mimic a scuba dive to a depth of 90 msw and its pathogenic decompression phase. Clinical examinations and blood counts were conducted after the return to the surface. For the first time they were completed by a simple infrared (IR) imaging technique in order to assess feasibility and its clinical advantage in differentiating the sick mice (DCS) from the healthy mice (NoDCS). In this tudy, exposure to the hyperbaric protocol provoked a reduction in the number of circulating leukocytes. DCS in mice, manifesting itself by paralysis or convulsion for example, is also associated with a fall in platelets count. Cold areas ( < 25°C) were detected by IR in the hind paws and tail with significant differences (p < 0.05) between DCS and NoDCS. Severe hypothermia was also shown in the DCS mice. The ROC analysis of the thermograms has made it possible to determine that an average tail temperature below 27.5°C allows us to consider the animals to be suffering from DCS (OR = 8; AUC = 0.754, p = 0.0018). Minocycline modulates blood analysis and it seems to limit the mobilization of monocytes and granulocytes after the provocative dive. While a higher proportion of mice treated with minocycline experienced DCS symptoms, there is no significant difference. The infrared imaging has made it possible to show severe hypothermia. It suggests an modification of thermregulation in DCS animals. Surveillance by infrared camera is fast and it can aid the prognosis in the case of decompression sickness in mice.

16.
Front Physiol ; 9: 1695, 2018.
Article in English | MEDLINE | ID: mdl-30555340

ABSTRACT

Circulating mitochondrial DNA (mtDNA) is receiving increasing attention as a danger-associated molecular pattern in conditions such as autoimmunity or trauma. In the context of decompression sickness (DCS), the course of which is sometimes erratic, we hypothesize that mtDNA plays a not insignificant role particularly in neurological type accidents. This study is based on the comparison of circulating mtDNA levels in humans presenting with various types of diving accidents, and punctured upon their admission at the hyperbaric facility. One hundred and fourteen volunteers took part in the study. According to the clinical criteria there were 12 Cerebro DCS, 57 Medullary DCS, 15 Vestibular DCS, 8 Ctrl+ (accident-free divers), and 22 Ctrl- (non-divers). This work demonstrates that accident-free divers have less mtDNA than non-divers, which leads to the assumption that hyperbaric exposure degrades the mtDNA. mtDNA levels are on average greater in divers with DCS compared with accident-free divers. On another hand, the amount of double strand DNA (dsDNA) is neither significantly different between controls, nor between the different DCS types. Initially the increase in circulating oligonucleotides was attributed to the destruction of cells by bubble abrasion following necrotic phenomena. If there really is a significant difference between the Medullary DCS and the Ctrl-, this difference is not significant between these same DCS and the Ctrl+. This refutes the idea of massive degassing and suggests the need for new research in order to verify that oxidative stress could be a key element without necessarily being sufficient for the occurrence of a neurological type of accident.

17.
Diving Hyperb Med ; 48(3): 132-140, 2018 Sep 30.
Article in English | MEDLINE | ID: mdl-30199887

ABSTRACT

INTRODUCTION: Ultrasonic detection of venous gas emboli (VGE) in the precordial (PRE) region is commonly used in evaluation of decompression stress. While subclavian (SC) VGE detection can also be used to augment and improve the evaluation, no study has rigorously compared VGE grades from both sites as decompression stress indicators. METHODS: This retrospective study examined 1,016 man-dives breathing air extracted from the Defence Research and Development Canada dataset. Data for each man-dive included dive parameters (depth, bottom time, total ascent time), PRE and SC VGE grades (Kisman-Masurel) and post-dive decompression sickness (DCS) status. Correlation between SC and PRE grades was analyzed and the association of the probability of DCS (pDCS) with dive parameters and high bubble grades (HBG III- to IV) was modelled by logistic regression for SC and PRE separately for DCS risk ratio comparisons. RESULTS: PRE and SC VGE grades were substantially correlated (R = 0.66) and were not statistically different (p = 0.61). For both sites, pDCS increased with increasing VGE grade. When adjusted for dive parameters, the DCS risk was significantly associated with HBG for both PRE (p = 0.03) and SC (p < 0.001) but the DCS risk ratio for SC HBG (RR = 6.0, 95% CI [2.7-12.3]) was significantly higher than for PRE HBG (RR = 2.6, 95% CI [1.1-6.0]). CONCLUSIONS: The association of bubble grades with DCS occurrence is stronger for SC than PRE when exposure severity is taken into account. The usefulness of SC VGE in decompression stress evaluation has been underestimated in the past.


Subject(s)
Decompression Sickness/diagnosis , Diving , Embolism, Air/diagnosis , Canada , Decompression , Decompression Sickness/etiology , Diving/adverse effects , Humans , Male , Reproducibility of Results , Retrospective Studies , Veins
18.
Front Physiol ; 9: 906, 2018.
Article in English | MEDLINE | ID: mdl-30050468

ABSTRACT

In its severest forms, decompression sickness (DCS) may extend systemically and/or induce severe neurological deficits, including paralysis or even death. It seems that the sterile and ischemic inflammatory phenomena are consecutive to the reaction of the bubbles with the organism and that the blood platelet activation plays a determinant role in the development of DCS. According to the hypotheses commonly put forward, the bubbles could either activate the platelets by direct contact or be the cause of abrasion of the vascular epithelium, which would expose the basal plate glycogen and then prompt the platelets to activate. The purpose of this study is to confirm anti-platelet drugs specific to GPIIb/IIIa integrin could prevent DCS, using a rat model. There is a significant difference concerning the incidence of the drug on the clinical status of the rats (p = 0.016), with a better clinical outcome for rats treated with tirofiban (TIR) compared with the control rats (p = 0.027), even if the three anti-GPIIb/IIIa agents used have limited respiratory distress. TIR limited the decrease in platelet counts following the hyperbaric exposure. TIR help to prevent from DCS. TIR is specific to GPIIb/IIIa whereas eptifibatide and abciximab could inhibit αVß3 and αMß2 involved in communication with the immune system. While inhibiting GPIIb/IIIa could highlight a platelet-dependent inflammatory pathway that improves DCS outcomes, we wonder whether inhibiting the αVß3 and αMß2 communications is not a wrong approach for limiting mortality in DCS.

19.
Sci Rep ; 8(1): 10128, 2018 07 04.
Article in English | MEDLINE | ID: mdl-29973647

ABSTRACT

Massive bubble formation after diving can lead to decompression sickness (DCS). Gut fermentation at the time of a dive exacerbates DCS due to endogenous hydrogen production. We sought to investigate whether medium-term stimulation of fermentation as a result of polyethylene glycol (PEG)-induced acceleration of bowel transit before diving exacerbates DCS in rats. Seven days before an experimental dry dive, 60 rats were randomly divided in two groups: an experimental group treated with PEG (n = 30) and an untreated control group (n = 30). Exhaled hydrogen was measured before the dive. Following hyperbaric exposure, we assessed for signs of DCS. After anaesthetisation, arterial blood was drawn to assay inflammatory cytokines and markers of oxidative stress. PEG led to a significant increase in exhaled H2 (35 ppm [10-73] compared with control 7 ppm [2-15]; p = 0.001). The probability of death was reduced in PEG-treated rats (PEG: 17% [95% CI 4-41] vs control: 50% [95% CI 26-74]; p = 0.034). In addition, inflammatory markers were reduced, and the antioxidant activity of glutathione peroxidase was significantly increased (529.2 U.l-1 [485.4-569.0] versus 366.4 U.l-1 [317.6-414.8]; p = 0.004). Thus, gut fermentation might have a positive effect on DCS. The antioxidant and neuroprotective properties of the fermentation by-products H2 and butyrate may explain these results.


Subject(s)
Decompression Sickness/prevention & control , Fermentation , Gastrointestinal Transit , Animals , Decompression Sickness/drug therapy , Gastrointestinal Microbiome , Laxatives/therapeutic use , Male , Polyethylene Glycols/therapeutic use , Rats , Rats, Sprague-Dawley
20.
Rev Infirm ; 67(242): 14-15, 2018.
Article in French | MEDLINE | ID: mdl-29907169

ABSTRACT

There are two types of indications of hyperbaric oxygen therapy: it may be used as an emergency treatment in certain acute pathologies or as a therapy for chronic long-term pathologies. The indications are regularly updated and assessed through consensus conferences.


Subject(s)
Hyperbaric Oxygenation , Acute Disease/therapy , Chronic Disease/therapy , Emergency Medical Services/methods , Humans , Hyperbaric Oxygenation/adverse effects , Hyperbaric Oxygenation/methods , Hyperbaric Oxygenation/nursing , Hyperbaric Oxygenation/statistics & numerical data , Oxygen/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...